5-HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury.

نویسندگان

  • P J Harvey
  • X Li
  • Y Li
  • D J Bennett
چکیده

We examined the modulation of persistent inward currents (PICs) by serotonin (5-HT) in spinal motoneurons of normal and chronic spinal rats. PICs are composed of both a TTX-sensitive persistent sodium current (Na PIC) and a nimodipine-sensitive persistent calcium current (Ca PIC), and we focused on quantifying the Na PIC (and its action on the total PIC), which is known to be critical in enabling repetitive firing. Intracellular recordings were made from motoneurons of the whole sacrocaudal spinal cord of normal adult rats after the cord was acutely transected at the S2 spinal level (acute spinal rat condition), removed from the animal, and then maintained in vitro. In vitro motoneuron recordings were likewise made from rats that had a sacral spinal transection 2 mo previously (chronic spinal rats). In motoneurons from acute spinal rats, moderately high doses of 5-HT (> or = 10 microM), or the 5-HT2 receptor agonist DOI (> or = 30 microM), significantly increased the total PIC, hyperpolarized the PIC onset voltage, and hyperpolarized the spike threshold, whereas lower doses had no effect. Both 5-HT and DOI specifically increased the Na PIC portion of the total PIC (tested with nimodipine blocking the Ca PIC). Additionally, 5-HT, but not DOI, depolarized the resting membrane potential (Vm) and increased the input resistance (Rm) in a dose-dependent manner. Therefore 5-HT2 receptor activation facilitated the Na PIC, whereas other 5-HT receptors modulated Vm and Rm. Motoneurons of chronic spinal rats responded to 5-HT and DOI in the same way, but with larger responses and at much lower doses (0.3-1 microM), thus exhibiting a 30-fold supersensitivity to 5-HT. Specifically the Na PIC was supersensitive to 5-HT2 receptor activation with DOI. Also, Rm and Vm were supersensitive to 5-HT. Consistent with the known critical role of the Na PIC in repetitive firing, enhancement of the Na PIC by DOI or 5-HT facilitated the repetitive firing evoked by steady current injection and enabled repetitive firing in a subpopulation of motoneurons of acute spinal rats that were initially unable to produce sustained repetitive firing. We suggest that after spinal transection, residual endogenous spinal sources of 5-HT help facilitate the Na PIC and repetitive firing. With chronic injury, the developed 5-HT supersensitivity more than compensates for lost brain stem 5-HT, so that the Na PIC is large and motoneurons are very excitable, thus contributing to spasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous monoamine receptor activation is essential for enabling persistent sodium currents and repetitive firing in rat spinal motoneurons.

The spinal cord and spinal motoneurons are densely innervated by terminals of serotonin (5-HT) and norepinephrine (NE) neurons arising mostly from the brain stem, but also from intrinsic spinal neurons. Even after long-term spinal transection (chronic spinal), significant amounts (10%) of 5-HT and NE (monoamines) remain caudal to the injury. To determine the role of such endogenous monoamines, ...

متن کامل

Persistent sodium currents and repetitive firing in motoneurons of the sacrocaudal spinal cord of adult rats.

Months after sacral spinal transection in rats (chronic spinal rats), motoneurons below the injury exhibit large, low-threshold persistent inward currents (PICs), composed of persistent sodium currents (Na PICs) and persistent calcium currents (Ca PICs). Here, we studied whether motoneurons of normal adult rats also exhibited Na and Ca PICs when the spinal cord was acutely transected at the sac...

متن کامل

Serotonin facilitates a persistent calcium current in motoneurons of rats with and without chronic spinal cord injury.

In the months after spinal cord transection, motoneurons in the rat spinal cord develop large persistent inward currents (PICs) that are responsible for muscle spasticity. These PICs are mediated by low-threshold TTX-sensitive sodium currents (Na PIC) and L-type calcium currents (Ca PIC). Recently, the Na PIC was shown to become supersensitive to serotonin (5-HT) after chronic injury. In the pr...

متن کامل

Neuroprotective Effects of Sodium Meta Silicate on Motoneurons of Spinal Cord Ventral Horn In Rats Underwent to Compressived Injury of Sciatic Nerve

Purpose: It has been shown that sodium meta silicate has an antioxidant effects and suppress the production of oxidative enzymes. Since the inflammation phenomena and increase the level of free radicals mostly take part in post-injury neuronal degeneration, the purpose of the present research was to examine weather the antioxidant property of sodium meta silicate can prevent the central degener...

متن کامل

Plateau potentials in sacrocaudal motoneurons of chronic spinal rats, recorded in vitro.

Intracellular recordings were made from sacrocaudal tail motoneurons of acute and chronic spinal rats to examine whether plateau potentials contribute to spasticity associated with chronic injury. The spinal cord was transected at the S2 level, causing, over time, exaggerated long-lasting reflexes (hyperreflexia) associated with a general spasticity syndrome in the tail muscles of chronic spina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 96 3  شماره 

صفحات  -

تاریخ انتشار 2006